
Routing-WS Documentation
Release 1.1.1

Javier Quinteros

November 10, 2017

CONTENTS

1 Summary 1

2 Installation 3
2.1 License . 3
2.2 Requirements . 3
2.3 Download . 3
2.4 Installation on Apache . 3
2.5 Testing the service . 7
2.6 Maintenance . 8
2.7 Upgrade . 8

3 Using the Service 9
3.1 Default configuration . 9
3.2 Manual configuration . 9
3.3 Importing remote routes . 10
3.4 Cache of station names and locations . 10
3.5 Defining virtual networks . 11
3.6 Methods available . 11

4 Documentation for developers 17
4.1 Routing module . 17
4.2 Utils module . 17
4.3 Wsgicomm module . 22

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

SUMMARY

One of the aims of the European Integrated Data Archive (EIDA) is to provide transparent access and services to
high quality, seismic data across different data archives in Europe. In the context of the design of the EIDA New
Generation (EIDA-NG) software we envision a future in which many different data centers offer data products
using compatible types of services, but pertaining to different seismic objects, such as waveforms, inventory, or
event data. EIDA provides one example, in which data centers (the EIDA “nodes”) have long offered Arclink and
Seedlink services, and now offer FDSN web services, for accessing their holdings. In keeping with the distributed
nature of EIDA, these services could run at different nodes. Depending on the type of service, these may only
provide information about a reduced subset of all the available waveforms.

To assist users to locate data, we have designed a Routing Service, which could run at EIDA nodes or elsewhere,
including on a user’s personal computer. This (meta)service is supposed to be queried by clients (or other services)
in order to localize the address(es) where the desired information is provided.

The Routing Service must serve this information in order to help the development of smart clients and/or services
of higher level, which can offer the user an integrated view of the whole EIDA, hiding the complexity of its internal
structure. However, the Routing Service need not be aware of the extent of the content offered by each service,
avoiding the need for a large synchronized database at any place.

The service is intended to be open and able to be queried by anyone without the need of credentials or authentica-
tion.

1

http://www.orfeus-eu.org/eida/eida.html

Routing-WS Documentation, Release 1.1.1

2 Chapter 1. Summary

CHAPTER

TWO

INSTALLATION

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Requirements

• Python 2.7

• mod_wsgi (if using Apache). Also Python libraries for libxslt and libxml.

Download

Download the tar file / source from the GEOFON web page at http://geofon.gfz-potsdam.de/software.

Note: Nightly builds can be downloaded from Github (https://github.com/EIDA/routing.git).

Untar into a suitable directory visible to the web server, such as /var/www/eidaws/routing/1/

$ cd /var/www/eidaws/routing/1
$ tar xvzf /path/to/tarfile.tgz

This location will depend on the location of the root (in the file system) for your web server.

Installation on Apache

To deploy the EIDA Routing Service on an Apache2 web server using mod_wsgi:

1. Extract the package in the desired directory. In these instructions we assume this directory is
/var/www/eidaws/routing/1/.

• If you downloaded the package from the GEOFON website, unpack the files into the chosen directory.
(See Download above.)

• If you want to get the package from Github, use the following commands:

3

http://www.gnu.org/licenses/
http://geofon.gfz-potsdam.de/software
https://github.com/EIDA/routing.git

Routing-WS Documentation, Release 1.1.1

$ cd /var/www/eidaws/routing
$ git clone https://github.com/GEOFON/routing.git 1
$ cd 1

2. Enable mod_wsgi. For openSUSE, add ‘wsgi’ to the list of modules in the APACHE_MODULES variable
in /etc/sysconfig/apache2

APACHE_MODULES+=" python wsgi"

and restart Apache. You should now see the following line in your configuration (in
/etc/apache2/sysconfig.d/loadmodule.conf for openSUSE)

LoadModule wsgi_module /usr/lib64/apache2/mod_wsgi.so

You can also look at the output from a2enmod -l - you should see wsgi listed.

For Ubuntu/Mint, you can enable the module with the command

$ sudo a2enmod wsgi

and you can restart apache with:

$ sudo service apache2 stop
$ sudo service apache2 start

If the module was added succesfully you should see the following two links in
/etc/apache2/mods-enable

wsgi.conf -> ../mods-available/wsgi.conf
wsgi.load -> ../mods-available/wsgi.load

For any distribution there may be a message like this in Apache’s error_log file, showing that mod_wsgi
was loaded

[Tue Jul 16 14:24:32 2013] [notice] Apache/2.2.17 (Linux/SUSE)
PHP/5.3.5 mod_python/3.3.1 Python/2.7 mod_wsgi/3.3 configured
-- resuming normal operations

3. Add the following lines to a new file, conf.d/routing.conf, or in default-server.conf, or in the configuration
for your virtual host.

WSGIScriptAlias /eidaws/routing/1 /var/www/eidaws/routing/1/routing.wsgi
<Directory /var/www/eidaws/routing/1/>

Order allow,deny
Allow from all

</Directory>

Change /var/www/eidaws/routing/1 to suit your own web server’s needs.

4. Change into the root directory of your installation and copy routing.cfg.sample to routing.cfg, or make a
symbolic link

$ cd /var/www/eidaws/routing/1
$ cp routing.cfg.sample routing.cfg

5. Edit routing.wsgi and check that the paths there reflect the ones selected for your installation.

6. Edit routing.cfg and be sure to configure everything correctly. This is discussed under “Configuration Op-
tions” below.

7. Start/restart the web server e.g. as root. In OpenSUSE

$ /etc/init.d/apache2 configtest
$ /etc/init.d/apache2 restart

or in Ubuntu/Mint

4 Chapter 2. Installation

Routing-WS Documentation, Release 1.1.1

$ sudo service apache2 reload
$ sudo service apache2 stop
$ sudo service apache2 start

8. Get initial metadata in the data directory. You have two options to feed the system with some routes.
Either you edit by hand (or copy from some other place) a file with your local streams and save them into
data/routing.xml, or you get them from an Arclink server. In the latter case, you need to allow this in the
configuration file like this:

$ vim routing.cfg
$ # set ArclinkBased = true to allow the information to be overwritten by Arclink data
$ grep ArclinkBased routing.cfg
ArclinkBased = true

After saving this change you can run change into the data directory and run the updateAll.py script
there.

$ cd /var/www/eidaws/routing/1/data
$./updateAll.py -l DEBUG

If you don’t specify any parameters to the script, the information needed will be read from the configuration
file at the default location ../routing.cfg. You can use the switch -h to see the parameters you can use.

$./updateAlls.py -h
usage: updateAll.py [-h] [-l {CRITICAL,ERROR,WARNING,INFO,DEBUG}] [-s SERVER]

[-c CONFIG]

Get EIDA routing configuration and "export" it to the FDSN-WS style.

optional arguments:
-h, --help show this help message and exit
-l {CRITICAL,ERROR,WARNING,INFO,DEBUG}, --loglevel {CRITICAL,ERROR,WARNING,INFO,DEBUG}

Verbosity in the output.
-s SERVER, --server SERVER

Arclink server address (address.domain:18001).
-c CONFIG, --config CONFIG

Config file to use.

9. It is important to check the permissions of the working directory and the files in it, as some data needs to be
saved there. For instance, in some distributions Apache is run by the www-data user, which belongs to a
group with the same name (www-data). The working directory should have read-write permission for the
user running Apache and the user who will do the regular metadata updates (see crontab configuration in
the last point of this instruction list). The system will also try to create and write temporary information in
this directory.

Warning: Wrong configuration in the permissions of the working directory could diminish the perfor-
mance of the system.

One possible configuration would be to install the system as a user (for instance, sysop), who will run the
crontab update, with the working directory writable by the group of the user running Apache (www-data in
Ubuntu/Mint).

$ cd /var/www/eidaws/routing/1
$ sudo chown -R sysop.www-data .
$ cd data
$ sudo chmod -R g+w .

10. Arrange for regular updates of the metadata in the working directory. Something like the following lines
will be needed in your crontab:

$ Daily metadata update for routing service
52 03 * * * /var/www/eidaws/routing/1/data/updateAll.py

2.4. Installation on Apache 5

Routing-WS Documentation, Release 1.1.1

11. Restart the web server to apply all the changes, e.g. as root. In OpenSUSE:

$ /etc/init.d/apache2 configtest
$ /etc/init.d/apache2 restart

or in Ubuntu/Mint:

$ sudo service apache2 reload
$ sudo service apache2 stop
$ sudo service apache2 start

Configuration options

The configuration file contains two sections up to this moment.

Arclink

Warning: The capability to get routes from an Arclink server has been deprecated and it should not be used
at all. This functionality will be removed from future versions!

In the Arclink section an arclink server must be defined, from which the default routing table could be retrieved.
The default value is the Arclink server running at GEOFON, but this can be configured with the address of any
Arclink server.

[Arclink]
server = eida.gfz-potsdam.de
port = 18002

Service

baseURL should contain the basic URL of the current Routing Service in order to be used in the generation of the
application.wadl method. For instance,

.. code-block:: ini

baseURL = http://mydomain.dom/eidaws/routing/1

The variable info specifies the string that the config method from the service should return.

The variable updateTime determines at which moment of the day should be updated all the routing information.

The format for the update time should be HH:MM separated by a space. It is not necessary that the different time
entries are in order. If no update is required, there should be nothing at the right side of the = character.

Deprecated since version This: functionality was actually skipped and this options will be removed in future
releases. The usage of a cronjob is recommended to run the updateAll.py script and generate the binary version of
the routing table.

ArclinkBased determines whether the routing information should be retrieved from an Arclink server by the up-
dateAll.py script. Usually, you want to set it to false in order to configure your own set of routes, so that the
update procedure will not delete your manual configuration.

Deprecated since version This: option will be removed in a future version, when the capability to feed the service
from an Arclink server disappears.

verbosity controls the amount of output send to the logging system depending of the importance of the messages.
A number is expected ranging from 1 to 4, meaning: 1: Error, 2: Warning, 3: Info and 4: Debug.

synchronize specifies the remote servers from which more routes should be imported. This is explained in detail
in Importing remote routes.

6 Chapter 2. Installation

http://mydomain.dom/eidaws/routing/1

Routing-WS Documentation, Release 1.1.1

allowoverlap determines whether the routes imported from other services can overlap the ones already present. In
case this is set to false and an overlapping route is found, the Route will be discarded with an error message in
the log. When it is set to true, the Route will be still included, but the resulting data could be inconsistent.

[Service]
baseURL = http://mydomain.dom/eidaws/routing/1
info = Routing information from the Arclink Server at GEOFON.

All the routes related to EIDA are supposed to be available here.
updateTime = 01:01 16:58
ArclinkBased = true
verbosity = 3
synchronize = SERVER2, http://server2/eidaws/routing/1

SERVER3, http://server3/eidaws/routing/1
allowoverlap = true

Installation problems

Always check your web server log files (e.g. for Apache: access_log and error_log) for clues.

If you visit http://localhost/eidaws/routing/1/version on your machine you should see the version information of
the deployed service

1.1.1

If this information cannot be retrieved, the installation was not successful. If this do show up, check that the
information there looks correct.

Testing the service

Two scripts are provided to test the functionality of the service at different levels. These can be found in the test
folder under the root directory of your installation.

Class level

The script called testRoute.py will try to import the objects used in the Routing Service in order to test their
functionality. The data will not be provided by the web service, but from the classes inside the package. In this
way, the logic of the package and the coherence of the information can be tested, excluding other factors related
to the configuration of other pieces of software (f.i. web server, firewall, etc.).

$./testRoute.py
Running test...
Checking Dataselect CH.LIENZ.*.BHZ... [OK]
Checking Dataselect CH.LIENZ.*.HHZ... [OK]
Checking Dataselect CH.LIENZ.*.?HZ... [OK]
Checking Dataselect GE.*.*.*... [OK]
Checking Dataselect GE.APE.*.*... [OK]
Checking Dataselect RO.BZS.*.BHZ... [OK]

A set of test cases have been implemented and the expected responses are compared with the ones returned by the
service.

Note: The test cases are related to the sample routing data which is provided in routing.xml.sample and will
make no sense if the service is configured to route other set of networks. In that case, the operator of the service
should modify scripts in order to test the coherence of the information provided by the service.

2.5. Testing the service 7

http://localhost/eidaws/routing/1/version

Routing-WS Documentation, Release 1.1.1

Service level

The script called testService.py will try to connect to a Routing Service at a particular URL, which must
be passed as a parameter. In previous versions the default value was http://localhost/eidaws/routing/1/query, but
as the functionality of the Routing Service was much improved, real and resolvable addresses are needed.

$./testService.py http://server/path/query
Running test...
Checking Dataselect CH.LIENZ.*.BHZ... [OK]
Checking Dataselect CH.LIENZ.*.HHZ... [OK]
Checking Dataselect CH.LIENZ.*.?HZ... [OK]
Checking Dataselect GE.*.*.*... [OK]
Checking Dataselect GE.APE.*.*... [OK]
Checking Dataselect GE,RO.*.*.*... [OK]
Checking Dataselect RO.BZS.*.BHZ... [OK]
Checking non-existing network XX... [OK]
Checking incompatibility between alternative=true and format=get... [OK]
Checking the 'application.wadl' method... [OK]
Checking the 'info' method... [OK]
Checking very large URI... [OK]
Checking the 'version' method... [OK]
Checking wrong values in alternative parameter... [OK]
Checking swap start and end time... [OK]
Checking wrong format option... [OK]
Checking unknown parameter... [OK]

The set of test cases related to data consistency are the same as in the testRoute.py script. The other tests are
related to the protocol itself.

Maintenance

The Routing Table needs to be updated regularly due to the small but constant changes in the EIDA structure.
You should always be able to run safely the updateAll.py script at any time you want. The Routing Service
creates a binary version of the XML containing the routes, but this will be automatically updated each time a new
inventory XML file is detected.

Upgrade

At this stage, it’s better to back up and then remove the old installation first.

$ cd /var/www/eidaws/routing/ ; mv 1 1.old

Then reinstall from scratch, as in the installation instructions. Your web server configuration should need no
modification. At Steps 4-6, re-use your previous versions of routing.wsgi and routing.cfg

$ cp ../1.old/routing.wsgi routing.wsgi
$ cp ../1.old/routing.cfg routing.cfg

And of course, copy your local routing table also.

$ cp ../1.old/data/routing.xml data/routing.xml
$ cp ../1.old/data/masterTable.xml data/masterTable.xml

8 Chapter 2. Installation

http://localhost/eidaws/routing/1/query

CHAPTER

THREE

USING THE SERVICE

Default configuration

A script called updateAll.py is provided in the package, which can be found in the data folder. This script
can load the local routing information as well as synchronize the remote routes, which are provided by the other
EIDA nodes. All necessary parameters will be read from the configuration file (routing.cfg). Namely, the
list of data centres, which have data to synchronize.

When the service starts, checks if there is a file called routing.xml in the data directory. This file is expected
to contain all the information needed to feed the routing table. The file format must be Arclink-XML.

The following is an example of an Arclink-XML file.

<?xml version="1.0" encoding="utf-8"?>
<ns0:routing xmlns:ns0="http://server/ns/Routing/1.0/">

<ns0:route networkCode="GE" stationCode="" locationCode="" streamCode="">
<ns0:station address="http://domain/fdsnws/station/1/query"

priority="1" start="1993-01-01T00:00:00" end="" />
<ns0:dataselect address="http://domain/fdsnws/dataselect/1/query"

priority="1" start="1993-01-01T00:00:00" end="" />
</ns0:route>
<ns0:route networkCode="CH" stationCode="*" locationCode="*" streamCode="*">

<ns0:station address="http://domain2/fdsnws/station/1/query"
priority="1" start="1980-01-01T00:00:00" end="" />

<ns0:dataselect address="http://domain2/fdsnws/dataselect/1/query"
priority="1" start="1980-01-01T00:00:00" end="" />

</ns0:route>
</ns0:routing>

This is exactly the file that the updateAll.py script creates with information from EIDA. With this information
and the metadata downloaded by the same script the service can be started.

Manual configuration

A better option would be to take the file from Arclink as a base and make some adjustments to it manually. The
number of routes could be reduced drastically by means of a clever use of the wildcards.

If some extra information not available within EIDA would like to be also routed, there is a masterTable that can
be used. When the service starts, it checks if a file called masterTable.xml in the data folder exists. If this
is the case, the file is read, the routes inside are loaded in a separate table and are given the maximum priority.
This could be perfect to route requests to other data centres, whose internal structure is not well known.

Note: There are two main differences between the information provided in routing.xml and the one provided in
masterTable.xml. The former will be used to synchronize with other data centers if requested. On the other hand,
the information added in masterTable.xml will be kept private and not take part in any synchronization process.

9

Routing-WS Documentation, Release 1.1.1

Warning: Only the network level is used to calculate the routing for the routes in the master table. This makes
sense if we consider that the main purpose of this extra information is to be able to route requests to other data
centres who do not synchronize their routing information with you. Therefore, the internal and more specific
structure of the distribution of data to levels deeper than the network are usually not known.

In the following example, we show how to point to the service in IRIS, when the II network is requested.

<?xml version="1.0" encoding="utf-8"?>
<ns0:routing xmlns:ns0="http://geofon.gfz-potsdam.de/ns/Routing/1.0/">

<ns0:route locationCode="" networkCode="II" stationCode="" streamCode="">
<ns0:dataselect address="service.iris.edu/fdsnws/dataselect/1/query"

end="" priority="9" start="1980-01-01T00:00:00.0000Z" />
</ns0:route>

</ns0:routing>

Warning: The priority attribute will be valid only in the context of the masterTable. There is no relation with
the priority for a similar route that could be in the normal routing table.

The routes that are part of the masterTable.xml will not be sent when the localconfig method of the
service is called, only the ones in the normal routing table.

The idea is that the routes in the normal routing table is the local information that should be probably synchronized
with other Routing Services.

Importing remote routes

In the case case that one datacenter decides to include routes from other datacenter (as in the EIDA case) , there is
no need to define them locally.

A normal use case would be that the datacenter A needs to provide routing information of data centres A and
B to its users. In order to allow datacenter B to export its routes, a method called localconfig is defined.
This method will return to the caller all the routing information locally defined in the routing.xml file. Every
datacenter is free to restrict the access to this method to well-known IP addresses or to keep it completely open by
means of access rules in the web server.

If the datacenter A has access to this method, it can import the routes automatically by means of the inclusion of
the base URL of the service at datacenter B in the synchronize option (under Service) of its configuration file.

[Service]
synchronize = DC-B, http://datacenter-b/path/routing/1

When the service in datacenter A starts, it will first include all the routes defined in routing.xml and then it
will save the routes read from http://datacenter-b/path/routing/1/localconfig in a file called DC-B.xml under the
data folder. This file can be used for future reference in case that all the routes need to be updated and datacenter
B is not available.

Once the file is saved, all the routes inside it will be added to the routing table in memory.

Cache of station names and locations

Once all the routes have been imported, all instances of Station-WS are queried with the available routes in order
to get a list of stations and their locations. The main purpose of this is to improve the querying capabilities of the
Routing Service in the following two use cases.

• Locations will be used to allow the usage of the FDSN parameters: minlat, maxlat, minlon, and maxlon.
These can be used to define a rectangular area and discover all stations present. This functionality was not
possible with the previous version of the Service, as no information related to the streams was saved.

10 Chapter 3. Using the Service

http://datacenter-b/path/routing/1/localconfig

Routing-WS Documentation, Release 1.1.1

• The case where the station names are needed is quite different. It had been detected that some queries
contained the station name (e.g. sta=XYZ) but no information about the network. This could be usual when
a user remembers the name of the station, which is associated with a location or village, but does not pay
attention to the network to which it belongs. As many routes have a configuration like NETCODE.*.*.*,
there was no way to know if the station belonged to that network or not. Meaning that in most of the cases,
this resulted in the Routing Service sending the user almost all the available routes to further discover where
the station is. This type of routes are very practical for the Administrator of the service, but less useful for
the user in cases like this. The solution was to create an automatic cache of the station names, so that the
Administrator can still configure very short routes, while the user can use more precise filters in his/her
request.

Defining virtual networks

The concept of a collection of stations, different of the formal network, has existed since a long time. There are
many reasons why this could result interesting. From creating a virtual network code which encompasses many
networks, to defining a subset of stations from one or more networks.

Since version 1.1.0 this new feature is supported in a way that the operator can define in the routing.xml file a
virtual network code as a list of stations.

For instance, an example is shown below where the _VN network is defined as the combination of stations ST1,
ST2 from network RN1 and ST3 from network RN2.

<?xml version="1.0" encoding="utf-8"?>
<ns0:routing xmlns:ns0="http://geofon.gfz-potsdam.de/ns/Routing/1.0/">

<ns0:vnetwork networkCode="_VN">
<ns0:stream networkCode="RN1" stationCode="ST1" locationCode="*" streamCode="*"

start="2015-01-01T00:00:00" end="2015-12-31T00:00:00" />
<ns0:stream networkCode="RN1" stationCode="ST2" locationCode="*" streamCode="*"

start="2015-01-01T00:00:00" end="2015-12-31T00:00:00" />
<ns0:stream networkCode="RN2" stationCode="ST3" locationCode="*" streamCode="*"

start="2015-01-01T00:00:00" end="2015-12-31T00:00:00" />
</ns0:vnetwork>

</ns0:routing>

In the case that the synchronization is enabled, the virtual networks will also be synchronized and shared with the
other Routing services. They will be treated in the same way as routes. Collisions with remote definitions will be
checked and will not be allowed.

The most important point to clarify when using virtual networks in the query is that the Routing Service will
always return real network and stations codes. In this way, the returned codes can be always used with the
downstream services, which most probably will not support virtual network codes, or at least it is not clear that
will contain exactly the same definitions of the virtual networks.

Methods available

Description of the service

The application.wadl method returns a WADL (web application description layer) description of the inter-
face using the MIME type application/xml. Any parameters submitted to the method will be ignored. The WADL
describes all parameters supported by this implementation and can be used as an automatic way to determine
methods and parameters supported by this service. This information is generated on the fly.

Version of the software

The version method returns the implementation version as a simple text string using the MIME type text/plain.
Any parameters submitted to the method will be ignored. This scheme follows the FDSN web services approach.

3.5. Defining virtual networks 11

Routing-WS Documentation, Release 1.1.1

The service is versioned according the following three-digit (x.y.z) pattern:

SpecMajor.SpecMinor.Implementation

where the fields have the following meaning:

1. SpecMajor: The major specification version, all implementations sharing this SpecMajor value will be
backwards compatible with all prior releases. Values are integers starting at 1.

2. SpecMinor: The minor specification version, incremented when optional parameters or behavior is added to
the previous specification but backwards compatibility is maintained with the previous major versions, i.e.
all 1.y.z service versions will be compatible with version 1.0. Values are integers starting at 0.

3. Implementation: The implementation version, an integer identifier specific to the data center implemen-
tation. Useful to track service updates for bug fixes, etc. but with no implication on conformance to the
specification.

Together the SpecMajor and SpecMinor versions imply a minimum expected behavior of a given service. This
versioning scheme allows clients to expect specific behavior based on the SpecMajor version, while allowing the
extension of the service with optional parameters and maintaining backwards compatibility. Each version number
is service specific, there is no implication that SpecMajor version numbers across services (from EIDA or FDSN)
are related.

Exporting routes

The localconfig method reads the content of the routing.xml file and returns it when this method is
invoked. The MIME type of the returned value is text/xml.

See also:

Importing remote routes

Querying information

The query method is how the users access the main functionality of the service. Both GET and POST methods
must be supported.

Input parameters

The complete list of input parameters can be seen in Table 2.1. Parameter names must be in lowercase, and may be
abbreviated as shown, following the FDSN style. Valid input values must have the format shown in the “Format”
column. All the values passed as parameters will be case-insensitive strings composed of numbers and letters. No
other symbols will be allowed with the exception of:

• wildcards (“*” and “?”), which may be used to select the streams (for parameters network, station, location
and channel only), and

• the symbols specified in the ISO 8601 format for dates, namely ‘:’, “-” (minus) and “.” may be used for
the starttime and endtime parameters,

• the string “--” (two minus symbols) may appear for the location parameter only.

Wildcards are accepted in the case of network, station, location and channel. The character * matches any value,
while ? matches any character. For any of these parameters, if no value is given it will be set to a star (*).

Any of these four parameters may also be submitted as comma-separated lists in order to select two or more values
with a single request. For example, the channel parameter may be used to specify multiple channels:

channel=LHE,LHN,LHZ,BHZ (the individual values may also include wildcards)

12 Chapter 3. Using the Service

Routing-WS Documentation, Release 1.1.1

Blank or empty location identifiers may be specified as “--” (two dashes) if needed, which the service must
translate to an empty string.

Table 3.1: Input parameters description

Parameter Support Format Description Default
starttime (start) Required ISO 8601 Limit results to time series samples on or after the speci-

fied start time.
Any

endtime (end) Required ISO 8601 Limit results to time series samples on or before the spec-
ified end time.

Any

network (net) Required char Select one network code. This can be either SEED net-
work codes or data center defined codes.

*

station (sta) Required char Select one station code. *
location (loc) Required char Select one location identifier. As a special case “–” (two

dashes) will be translated to an empty string to match
blank location IDs.

*

channel (cha) Required char Select one channel code. *
minlatitude Required float Limit to stations with a
(minlat) latitude larger than or equal to the specified minimum. -90
maxlatitude Required float Limit to stations with a
(maxlat) latitude smaller than or equal to the specified maximum. 90
minlongitude Required float Limit to stations with a
(minlon) longitude larger than or equal to the specified minimum. -180
maxlongitude Required float Limit to stations with a
(maxlon) longitude smaller than or equal to the specified maxi-

mum.
180

service Required char Specify which service will be queried (arclink, seedlink,
station, dataselect).

dataselect

format Required char Select the output format. Valid values are: xml, json, get,
post

xml

alternative Optional boolean Specify if the alternative routes should be also included
in the answer. Accepted values are “true” and “false”.

false

Output description and format

There are four different output formats supported by this service. The structure of the information returned is
different with each format type. In case of a successful request the HTTP status code will be 200, and the
response will be as described below for each format.

XML format

This is the default selection if the parameter format is not specified or if it is given with the value xml. The MIME
type must be set to text/xml. The following is an example of the expected XML structure. Each datacenter element
must contain exactly one url element, specifying the URL of the service at a given data centre, exactly one name
element, which gives the name of the service a list of params elements, each describing a stream, or set of streams
by using appropriate wildcarding, available using the service at that URL. The params element may be repeated
as many times as necessary inside the datacenter element.

<service>
<datacenter>

<url>http://ws.resif.fr/fdsnws/dataselect/1/query</url>
<params>

<loc>*</loc>
<end/>
<sta>KES28</sta>
<cha>*</cha>
<start/>

3.6. Methods available 13

Routing-WS Documentation, Release 1.1.1

<net>4C</net>
</params>
<name>dataselect</name>

</datacenter>
</service>

JSON format

if the format parameter is json, the information will be returned with MIME type text/plain. The content
will be a JSON (JavaScript Object notation) array, in which each element is a JSON object corresponding to a
<datacenter> element in the XML format shown above. For the example response above, this would appear
as:

[{"url": "http://ws.resif.fr/fdsnws/dataselect/1/query",
"params": [{"loc": "*", "end": "", "sta": "KES28", "cha": "*", "start": "",

"net": "4C"}], "name": "dataselect"}]

It should be noted that the value associated with params is an array of objects and that there will be as many
objects as needed for the same datacenter.

GET format

When the format parameter is set to get, the output will be declared as text/plain and will consist of one URL per
line. The URLs will be constructed in a way that they can be used directly by the client to request the necessary
information without the need to parse them.

http://ws.resif.fr/fdsnws/dataselect/1/query?sta=KES28&net=4C&
start=2010-01-01T00:00:00&end=2010-01-01T00:10:00

POST format

If format is post, the output will be also declared as text/plain and the structure will consist of: * a line with
a URL where the request must be made, * a list of lines with the format declared in the FDSN Web Services
specification to do a POST request.

If the request should be split in more than one datacenter, the blocks for every datacenter will be separated by a
blank line and the structure will be repeated (URL and POST body).

http://ws.resif.fr/fdsnws/dataselect/1/query
4C KES28 * * 2010-01-01T00:00:00 2010-01-01T00:10:00

Alternative routes

Warning: As a rule of a thumb and in a normal case, the alternative addresses should only be used if there is
no response from the authoritative data center.

If the alternative parameter is set, the service will return all the routes that match the requested criteria without
paying attention to the priority. The client will be required to interpret the priority of the routes and to select
the combination of routes that best fits their needs to request the information. The client needs also to take care
of checking the information to detect overlapping routes, which will definitely occur when a primary and an
alternative route are being reported for the same stream.

Note: It should be noted that the benefits of the “get” and “post” format outputs are almost nonexistent if
alternative routes are included in the output, since the result should be parsed in order to operate on the different
routes.

14 Chapter 3. Using the Service

Routing-WS Documentation, Release 1.1.1

How to pass the parameters

In the case of performing a request via the GET method, the parameters must be given in the usual way. Namely,

http://server_url?key1=value1&key2=value2

But in the case that the parameters should be passed via a POST method, the following format is expected. The
first lines can be used to pass the parameters not related to streams or timewindows (service, format, alternative)
with one key=value clause per line. For instance,

service=station

For the six parameters used to select streams and timewindows, one stream/ timewindow pair is expected per line
and the format must be:

net sta loc cha start end

If there is no defined time window, an empty string should be given as ‘’ or “”.

Warning: The separation of a request in more than one URL/parameters can be avoided by a client who
performs an expansion of the wildcards before contacting this service. However, in some complex cases it
could also happen that a stream is stored in two different data centers depending on the time window. In this
case, it is unavoidable to split the request in more than one data center.

Abnormal responses

In addition to a 200 OK status code for a successful request, other responses are possible, as shown in the HTTP
status codes returned by the Routing service. These are essentially the same as for FDSN web services. Under
error, maintenance or other unusual conditions a client may receive other HTTP codes generated by web service
containers, and other intermediate web technology.

Table 3.2: HTTP status codes returned by the Routing service

Code Description
200 OK, Successful request, results follow.
204 Request was properly formatted and submitted but no data matches the selection.
400 Bad request due to improper specification, unrecognized parameter, parameter value out of range, etc.
413 Request would result in too much data being returned or the request itself is too large. Returned error

message should include the service limitations in the detailed description. Service limits should also be
documented in the service WADL.

414 Request URI too large
500 Internal server error
503 Service temporarily unavailable, used in maintenance and error conditions

Information about the content of service

When the method info is invoked a description about the information handled by the Routing Service should be
returned. The answer must be of MIME type text/plain and actually is a text-free output. However, in the first
lines it is expected to be specified which information can we find by querying the service. For instance,

All Networks from XYZ institution
Stations in Indonesia
Stations in San Francisco

Other comments and descriptions that could be of interest of the user.

Any parameter passed to this method will be ignored.

3.6. Methods available 15

Routing-WS Documentation, Release 1.1.1

16 Chapter 3. Using the Service

CHAPTER

FOUR

DOCUMENTATION FOR DEVELOPERS

Routing module

Routing Service for EIDA.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or any later version.

Copyright 2014-2017 Javier Quinteros, GEOFON, GFZ Potsdam <geofon@gfz-
potsdam.de>

License GPLv3

Platform Linux

Module author: Javier Quinteros <javier@gfz-potsdam.de>, GEOFON, GFZ Potsdam

routing.application(environ, start_response)
Main WSGI handler. Process requests and calls proper functions.

routing.getParam(parameters, names, default, csv=False)
Read a parameter and return its value or a default value.

routing.makeQueryGET(parameters)
Process a request made via a GET method.

routing.makeQueryPOST(postText)
Process a request made via a POST method.

Utils module

Classes to be used by the Routing WS for EIDA.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or any later version.

Copyright 2014-2017 Javier Quinteros, GEOFON, GFZ Potsdam <geofon@gfz-
potsdam.de>

License GPLv3

Platform Linux

Module author: Javier Quinteros <javier@gfz-potsdam.de>, GEOFON, GFZ Potsdam

RoutingCache class

class routeutils.utils.RoutingCache(routingFile=None, masterFile=None, con-
fig=’routing.cfg’)

Manage routing information of streams read from an Arclink-XML file.

17

mailto:geofon@gfz-potsdam.de
mailto:geofon@gfz-potsdam.de
mailto:javier@gfz-potsdam.de
mailto:geofon@gfz-potsdam.de
mailto:geofon@gfz-potsdam.de
mailto:javier@gfz-potsdam.de

Routing-WS Documentation, Release 1.1.1

Platform Linux (maybe also Windows)

configArclink()
Connect via telnet to an Arclink server to get routing information.

Address and port of the server are read from the configuration file. The data is saved in the file
routing.xml. Generally used to start operating with an EIDA default configuration.

Deprecated since version 1.1.

This method should not be used and the configuration should be independent from Arclink. Namely,
the routing.xml file must exist in advance.

getRoute(stream, tw, service=’dataselect’, geoLoc=None, alternative=False)
Return routes to request data for the stream and timewindow provided.

Based on a stream(s) and a timewindow returns all the needed information (URLs and parameters) to
do the requests to different datacenters (if needed) and be able to merge the returned data avoiding
duplication.

Parameters

• stream (Stream) – Stream definition including wildcards

• tw (TW) – Timewindow

• service (str) – Service from which you want to get information

• geoLoc (geoRectangle) – Rectangle to filter stations

• alternative (bool) – Specifies whether alternative routes should be included

Returns URLs and parameters to request the data

Return type RequestMerge

Raises RoutingException

getRouteDS(service, stream, tw, geoLocation=None, alternative=False)
Return routes to request data for the parameters specified.

Based on a Stream and a timewindow (TW) returns all the needed information (URLs and param-
eters) to request waveforms from different datacenters (if needed) and be able to merge it avoiding
duplication.

Parameters

• service (string) – Specifies the service is being looked for

• stream (Stream) – Stream definition including wildcards

• tw (TW) – Timewindow

• geoLocation (geoRectangle) – Rectangle restricting the location of the station

• alternative (bool) – Specifies whether alternative routes should be included

Returns URLs and parameters to request the data

Return type RequestMerge

Raises RoutingException, ValueError

getRouteMaster(n, tw, service=’dataselect’, alternative=False)
Look for a high priority Route for a particular network.

This would provide the flexibility to incorporate new networks and override the normal configuration.

Parameters

• n (string) – Network code

• tw (TW) – Timewindow

18 Chapter 4. Documentation for developers

Routing-WS Documentation, Release 1.1.1

• service (string) – Service (e.g. dataselect)

• alternative (Bool) – Specifies whether alternative routes should be included

Returns URLs and parameters to request the data

Return type RequestMerge

Raises RoutingException

localConfig()
Return the local routing configuration.

Returns Local routing information in Arclink-XML format

Return type str

toXML(foutput, nameSpace=’ns0’)
Export the RoutingCache to an XML representation.

update()
Read the routing data from the file saved by the off-line process.

All the routing information is read into a dictionary. Only the necessary attributes are stored. This
relies on the idea that some other agent should update the routing data at a regular period of time.

updateAll()
Read the two sources of routing information.

updateMT()
Read the routes with highest priority and store them in memory.

All the routing information is read into a dictionary. Only the necessary attributes are stored. This
relies on the idea that some other agent should update the routing file at a regular period of time.

updateVN()
Read the virtual networks defined.

Stations listed in each virtual network are read into a dictionary. Only the necessary attributes are
stored. This relies on the idea that some other agent should update the routing file at a regular period
of time.

vn2real(stream, tw)
Transform from a virtual network code to a list of streams.

Parameters

• stream (Stream) – requested stream including virtual network code.

• tw (TW) – time window requested.

Returns Streams and time windows of real network-station codes.

Return type list

Route class

class routeutils.utils.Route
Namedtuple defining a Route.

The attributes are service: service name address: a URL tw: timewindow priority: priority of the route

Platform Any

overlap(otherRoute)
Check if there is an overlap between this route and otherRoute.

Parameters other (Stream) – Stream which should be checked for overlaps

4.2. Utils module 19

Routing-WS Documentation, Release 1.1.1

Returns Value specifying whether there is an overlap between this stream and the one
passed as a parameter

Return type Bool

toXML(nameSpace=’ns0’, level=2)
Export the Route to an XML representation.

Stream class

class routeutils.utils.Stream
Namedtuple representing a Stream.

It includes methods to calculate matching and overlapping of streams including (or not) wildcards. Compo-
nents are the usual to determine a stream:

n: network s: station l: location c: channel

Platform Any

overlap(other)
Check if there is an overlap between this stream and other one.

Parameters other (Stream) – Stream which should be checked for overlaps

Returns Value specifying whether there is an overlap between this stream and the one
passed as a parameter

Return type Bool

strictMatch(other)
Return a reduction of this stream to match what’s been received.

Parameters other (Stream) – Stream which should be checked for overlaps

Returns reduced version of this Stream to match the one passed in the parameter

Return type Stream

Raises Exception

toXMLclose(nameSpace=’ns0’, level=1)
Close the XML representation of a route given by toXMLopen.

toXMLopen(nameSpace=’ns0’, level=1)
Export the stream to XML representing a route.

XML representation is incomplete and needs to be closed by the method toXMLclose.

Station class

class routeutils.utils.Station
Namedtuple representing a Station.

This is the minimum information which needs to be cached from a station in order to be able to apply a
proper filter to the inventory when queries f.i. do not include the network name.

name: station name latitude: latitude longitude: longitude

Platform Any

20 Chapter 4. Documentation for developers

Routing-WS Documentation, Release 1.1.1

geoRectangle class

class routeutils.utils.geoRectangle
Namedtuple representing a geographical rectangle.

minlat: minimum latitude maxlat: maximum latitude minlon: minimum longitude maxlon: max-
imum longitude

Platform Any

contains(lat, lon)
Check if the point belongs to the rectangle.

TW (timewindow) class

class routeutils.utils.TW
Namedtuple with methods to perform calculations on timewindows.

Attributes are: start: Start datetime end: End datetime

Platform Any

difference(otherTW)
Substract otherTW from this TW.

The result is a list of TW. This operation does not modify the data in the current timewindow.

Parameters otherTW (TW) – timewindow which should be substracted from this one

Returns Difference between this timewindow and the one in the parameter

Return type list of TW

intersection(otherTW)
Calculate the intersection between otherTW and this TW.

This operation does not modify the data in the current timewindow.

Parameters otherTW (TW) – timewindow which should be intersected with this one

Returns Intersection between this timewindow and the one in the parameter

Return type TW

overlap(otherTW)
Check if the otherTW is contained in this TW .

Parameters otherTW (TW) – timewindow which should be checked for overlapping

Returns Value specifying whether there is an overlap between this timewindow and the one
in the parameter

Return type Bool

Examples

>>> y2011 = datetime(2011, 1, 1)
>>> y2012 = datetime(2012, 1, 1)
>>> y2013 = datetime(2013, 1, 1)
>>> y2014 = datetime(2014, 1, 1)
>>> TW(y2011, y2014).overlap(TW(y2012, y2013))
True
>>> TW(y2012, y2014).overlap(TW(y2011, y2013))
True

4.2. Utils module 21

Routing-WS Documentation, Release 1.1.1

>>> TW(y2012, y2013).overlap(TW(y2011, y2014))
True
>>> TW(y2011, y2012).overlap(TW(y2013, y2014))
False

RouteMT class

RequestMerge class

class routeutils.utils.RequestMerge
Extend a list to group data from many requests by datacenter.

Platform Any

append(service, url, priority, stream, tw)
Append a new Route without repeating the datacenter.

Overrides the append method of the inherited list. If another route for the datacenter was already
added, the remaining attributes are appended in params for the datacenter. If this is the first Route
for the datacenter, everything is added.

Parameters

• service (str) – Service name (f.i., ‘dataselect’)

• url (str) – URL for the service (f.i., ‘http://server/path/query‘)

• priority (int) – Priority of the Route (1: highest priority)

• stream (Stream) – Stream(s) associated with the Route

• start (datetime or None) – Start date for the Route

• end (datetime or None) – End date for the Route

extend(listReqM)
Append all the items in RequestMerge grouped by datacenter.

Overrides the extend method of the inherited list. If another route for the datacenter was already added,
the remaining attributes are appended in params for the datacenter. If this is the first Route for the
datacenter, everything is added.

Parameters listReqM (list of RequestMerge) – Requests from (posibly) different dat-
acenters to be added

index(service, url)
Check for the service and url specified in the parameters.

This overrides the index method of the inherited list.

Parameters

• service (str) – Requests from (possibly) different datacenters to be added

• url (str) – Address of the service provided by a datacenter

Returns position in the list where the service and url specified can be found

Return type int

Raises ValueError

Wsgicomm module

Functions and resources to communicate via a WSGI module

22 Chapter 4. Documentation for developers

http://server/path/query

Routing-WS Documentation, Release 1.1.1

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or any later version.

Copyright 2014-2017 Javier Quinteros, GEOFON, GFZ Potsdam <geofon@gfz-
potsdam.de>

License GPLv3

Platform Linux

Module author: Javier Quinteros <javier@gfz-potsdam.de>, GEOFON, GFZ Potsdam

class routeutils.wsgicomm.Logs(level=2, outstr=<open file ‘<stdout>’, mode ‘w’>)
Given a log level and a stream, redirect the output to the proper place.

Platform Linux

setLevel(level)
Set the level of the log.

Parameters level (int) – Log level (1: Error, 2: Warning, 3: Info, 4: Debug)

exception routeutils.wsgicomm.PlsRedirect(url)
Exception to signal that the web client must be redirected to a URL.

The constructor of the class receives a string, which is the URL where the web browser is going to be
redirected.

exception routeutils.wsgicomm.WIClientError(*args, **kwargs)
Exception to signal that an invalid request was received (400).

Platform Linux

exception routeutils.wsgicomm.WIContentError(*args, **kwargs)
Exception to signal that no content was found (204).

Platform Linux

exception routeutils.wsgicomm.WIError(status, body, verbosity=1)
Exception to signal that an error occurred.

Platform Linux

exception routeutils.wsgicomm.WIInternalError(*args, **kwargs)
Exception to signal that an internal server error occurred (500).

Platform Linux

exception routeutils.wsgicomm.WIServiceError(*args, **kwargs)
Exception to signal that the service is unavailable (503).

Platform Linux

exception routeutils.wsgicomm.WIURIError(*args, **kwargs)
Exception to signal that the URI is beyond the allowed limit (414).

Platform Linux

routeutils.wsgicomm.redirect_page(url, start_response)
Tell the web client through the WSGI module to redirect to a URL.

Platform Linux

routeutils.wsgicomm.send_dynamicfile_response(status, body, start_response)
Send a file (or file-like) object.

Caller must set the filename, size and content_type attributes of body.

Platform Linux

routeutils.wsgicomm.send_error_response(status, body, start_response)
Send a plain response in WSGI style.

4.3. Wsgicomm module 23

mailto:geofon@gfz-potsdam.de
mailto:geofon@gfz-potsdam.de
mailto:javier@gfz-potsdam.de

Routing-WS Documentation, Release 1.1.1

Platform Linux

routeutils.wsgicomm.send_file_response(status, body, start_response)
Send a file (or file-like) object.

Caller must set the filename, size and content_type attributes of body.

Platform Linux

routeutils.wsgicomm.send_html_response(status, body, start_response)
Send an HTML response in WSGI style.

Platform Linux

routeutils.wsgicomm.send_nobody_response(status, start_response)
Send a plain response without body in WSGI style.

Platform Linux

routeutils.wsgicomm.send_plain_response(status, body, start_response)
Send a plain response in WSGI style.

Platform Linux

routeutils.wsgicomm.send_xml_response(status, body, start_response)
Send an XML response in WSGI style.

Platform Linux

24 Chapter 4. Documentation for developers

PYTHON MODULE INDEX

r
routeutils.utils, 17
routeutils.wsgicomm, 22
routing, 17

25

Routing-WS Documentation, Release 1.1.1

26 Python Module Index

INDEX

A
append() (routeutils.utils.RequestMerge method), 22
application() (in module routing), 17

C
configArclink() (routeutils.utils.RoutingCache

method), 18
contains() (routeutils.utils.geoRectangle method), 21

D
difference() (routeutils.utils.TW method), 21

E
extend() (routeutils.utils.RequestMerge method), 22

G
geoRectangle (class in routeutils.utils), 21
getParam() (in module routing), 17
getRoute() (routeutils.utils.RoutingCache method), 18
getRouteDS() (routeutils.utils.RoutingCache method),

18
getRouteMaster() (routeutils.utils.RoutingCache

method), 18

I
index() (routeutils.utils.RequestMerge method), 22
intersection() (routeutils.utils.TW method), 21

L
localConfig() (routeutils.utils.RoutingCache method),

19
Logs (class in routeutils.wsgicomm), 23

M
makeQueryGET() (in module routing), 17
makeQueryPOST() (in module routing), 17

O
overlap() (routeutils.utils.Route method), 19
overlap() (routeutils.utils.Stream method), 20
overlap() (routeutils.utils.TW method), 21

P
PlsRedirect, 23

R
redirect_page() (in module routeutils.wsgicomm), 23
RequestMerge (class in routeutils.utils), 22
Route (class in routeutils.utils), 19
routeutils.utils (module), 17
routeutils.wsgicomm (module), 22
routing (module), 17
RoutingCache (class in routeutils.utils), 17

S
send_dynamicfile_response() (in module routeu-

tils.wsgicomm), 23
send_error_response() (in module routeu-

tils.wsgicomm), 23
send_file_response() (in module routeutils.wsgicomm),

24
send_html_response() (in module routeu-

tils.wsgicomm), 24
send_nobody_response() (in module routeu-

tils.wsgicomm), 24
send_plain_response() (in module routeu-

tils.wsgicomm), 24
send_xml_response() (in module routeu-

tils.wsgicomm), 24
setLevel() (routeutils.wsgicomm.Logs method), 23
Station (class in routeutils.utils), 20
Stream (class in routeutils.utils), 20
strictMatch() (routeutils.utils.Stream method), 20

T
toXML() (routeutils.utils.Route method), 20
toXML() (routeutils.utils.RoutingCache method), 19
toXMLclose() (routeutils.utils.Stream method), 20
toXMLopen() (routeutils.utils.Stream method), 20
TW (class in routeutils.utils), 21

U
update() (routeutils.utils.RoutingCache method), 19
updateAll() (routeutils.utils.RoutingCache method), 19
updateMT() (routeutils.utils.RoutingCache method), 19
updateVN() (routeutils.utils.RoutingCache method), 19

V
vn2real() (routeutils.utils.RoutingCache method), 19

W
WIClientError, 23

27

Routing-WS Documentation, Release 1.1.1

WIContentError, 23
WIError, 23
WIInternalError, 23
WIServiceError, 23
WIURIError, 23

28 Index

	Summary
	Installation
	License
	Requirements
	Download
	Installation on Apache
	Testing the service
	Maintenance
	Upgrade

	Using the Service
	Default configuration
	Manual configuration
	Importing remote routes
	Cache of station names and locations
	Defining virtual networks
	Methods available

	Documentation for developers
	Routing module
	Utils module
	Wsgicomm module

	Python Module Index
	Index

